Intelligent Systems Technologies to Assist in Utilization of Earth Observation Data

Gail McConaughy, Code 586

IA-KBS Team:

•H. (Rama) Ramapriyan*, G. McConaughy*, S. Morse**, D. Isaac***, LiPing Di****, Wen Li****, Chris Lynnes*

•* NASA Goddard Space Flight Center, Greenbelt, MD

** SoSA Corporation, Chantilly, VA

•*** Business Performance Systems, Bethesda, MD

•**** George Mason University

ISD Technology Exchange WorkshopJanuary 25, 2005

The Challenge: Succeeding in a Data Rich Environment

- Large and growing data collections from the Earth Observing System
 - 3.4 petabytes of data
 - 48 million files
 - 3.5 terabytes/day accumulation
- Distributed, heterogeneous data systems
 - ~70 data centers
 - Complex "value chains"
- Broad & diverse user community
 - Research, applications, education
- Limited human capacity to examine large volumes of data
 - Users need information, not just data

Widely Distributed and Heterogeneous Data

- Over 70 NASA funded Earth science "data centers" across the US, plus interagency and international partners
- Trend is for further distribution

Recent cooperative agreements add to the network of PI systems

The Challenge: Data Utilization Issues

- Timeliness
 - New applications require near-real-time data delivery
 - Human-based data quality assessment can take weeks or longer
- Access
 - Users need more assistance in locating relevant data in large archives
 - Content-based metadata and indexes could help
- Understandability
 - Users need a concise description of the salient characteristics of data
 - But, current data systems are generally oblivious to the content
- Readiness for Use
 - Users want information, not just data
 - Need to move up the data → information → knowledge chain
- Responsiveness
 - Systems should be aware of user needs and adapt to them

Intelligent Archives in the Context of Knowledge Building Systems (IA-KBS)

- Data archives exist throughout the information value chain
- Intelligence with feedback loops makes systems more effective
- Distributed intelligent components collaborate to achieve user goals

The Opportunity

- Data mining algorithms
 - Induction of general characteristics, relationships, & patterns from specific data
 - Successfully moved from labs to industrial use
- Intelligent data understanding
 - Research sponsored by NASA's Intelligent Systems Project
 - 22 research projects exploring a variety of algorithms applied to a variety of data...including remote sensing data
- Affordable high-performance computing
 - Improvements may make large-scale data mining feasible
 - Grid technologies could also provide needed capacity

Intelligent Archives in the Context of Knowledge Building Systems (cont'd)

Developed by: IAS-KBS Team: Ramapriyan, McConaughy, Morse, Isaac, Di, Li, Lynnes

IA-KBS – Relevant Technologies

- Distributed system architectures
 - Especially, Grid technologies
- Intelligent data understanding algorithms
 - Fern & Brodley: understanding high-dimensionality data using clustering, re-projection, cluster ensembles
 - Kumar et al: discovering climate indices using clustering on time-series data
 - Teng: identifying and removing anomalies to improve classifier performance
 - Kargupta: extending data mining algorithms to distributed architectures
 - Smelyanskiy: Bayesian inference of non-linear dynamical model parameters
 - Nemani & Golden: dynamic assembly of data and operators to satisfy a user's information goal
 - LeMoigne: sub-pixel accurate image registration for data fusion

- Promising data mining algorithms have been identified and applied to remote sensing data in a laboratory environment
- Design and implementation of a large-scale data mining experiment
 - Select and port IDU algorithm to large-scale storage system connected via grid technology to distributed processing capabilities
- Next step is to demonstrate utility and scalability in an operational environment
- Address test bed that would be generally useful to any Decision Support System Environment